全球快看点丨YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8,必卷!
点击下方名片关注【集智书童】,后台回复【YOLOv8】获取YOLOv8源码以及书童亲自绘制的YOLOv8结构图原图。回顾一下YOLOv5,不然没机会了这里粗略回
这里粗略回顾一下,这里直接提供YOLOv5的整理的结构图吧:
【资料图】
Backbone:CSPDarkNet结构,主要结构思想的体现在C3模块,这里也是梯度分流的主要思想所在的地方;PAN-FPN:双流的FPN,必须香,也必须快,但是量化还是有些需要图优化才可以达到最优的性能,比如cat前后的scale优化等等,这里除了上采样、CBS卷积模块,最为主要的还有C3模块(记住这个C3模块哦);Head:Coupled Head+Anchor-base,毫无疑问,YOLOv3、YOLOv4、YOLOv5、YOLOv7都是Anchor-Base的,后面会变吗?Loss:分类用BEC Loss,回归用CIoU Loss。话不多说,直接YOLOv8吧!直接上YOLOv8的结构图吧,小伙伴们可以直接和YOLOv5进行对比,看看能找到或者猜到有什么不同的地方?
下面就直接揭晓答案吧,具体改进如下:
Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。1、C2f模块是什么?与C3有什么区别?我们不着急,先看一下C3模块的结构图,然后再对比与C2f的具体的区别。针对C3模块,其主要是借助CSPNet提取分流的思想,同时结合残差结构的思想,设计了所谓的C3 Block,这里的CSP主分支梯度模块为BottleNeck模块,也就是所谓的残差模块。同时堆叠的个数由参数n来进行控制,也就是说不同规模的模型,n的值是有变化的。
其实这里的梯度流主分支,可以是任何之前你学习过的模块,比如,美团提出的YOLOv6中就是用来重参模块RepVGGBlock来替换BottleNeck Block来作为主要的梯度流分支,而百度提出的PP-YOLOE则是使用了RepResNet-Block来替换BottleNeck Block来作为主要的梯度流分支。而YOLOv7则是使用了ELAN Block来替换BottleNeck Block来作为主要的梯度流分支。
C3模块的Pytorch的实现如下:
classC3(nn.Module):#CSPBottleneckwith3convolutionsdef__init__(self,c1,c2,n=1,shortcut=True,g=1,e=0.5):#ch_in,ch_out,number,shortcut,groups,expansionsuper().__init__()c_=int(c2*e)#hiddenchannelsself.cv1=Conv(c1,c_,1,1)self.cv2=Conv(c1,c_,1,1)self.cv3=Conv(2*c_,c2,1)#optionalact=FReLU(c2)self.m=nn.Sequential(*(Bottleneck(c_,c_,shortcut,g,e=1.0)for_inrange(n)))defforward(self,x):returnself.cv3(torch.cat((self.m(self.cv1(x)),self.cv2(x)),1))
下面就简单说一下C2f模块,通过C3模块的代码以及结构图可以看到,C3模块和名字思路一致,在模块中使用了3个卷积模块(Conv+BN+SiLU),以及n个BottleNeck。
通过C3代码可以看出,对于cv1卷积和cv2卷积的通道数是一致的,而cv3的输入通道数是前者的2倍,因为cv3的输入是由主梯度流分支(BottleNeck分支)依旧次梯度流分支(CBS,cv2分支)cat得到的,因此是2倍的通道数,而输出则是一样的。
不妨我们再看一下YOLOv7中的模块:
YOLOv7通过并行更多的梯度流分支,放ELAN模块可以获得更丰富的梯度信息,进而或者更高的精度和更合理的延迟。
C2f模块的结构图如下:
我们可以很容易的看出,C2f模块就是参考了C3模块以及ELAN的思想进行的设计,让YOLOv8可以在保证轻量化的同时获得更加丰富的梯度流信息。
C2f模块对应的Pytorch实现如下:
classC2f(nn.Module):#CSPBottleneckwith2convolutionsdef__init__(self,c1,c2,n=1,shortcut=False,g=1,e=0.5):#ch_in,ch_out,number,shortcut,groups,expansionsuper().__init__()self.c=int(c2*e)#hiddenchannelsself.cv1=Conv(c1,2*self.c,1,1)self.cv2=Conv((2+n)*self.c,c2,1)#optionalact=FReLU(c2)self.m=nn.ModuleList(Bottleneck(self.c,self.c,shortcut,g,k=((3,3),(3,3)),e=1.0)for_inrange(n))defforward(self,x):y=list(self.cv1(x).split((self.c,self.c),1))y.extend(m(y[-1])forminself.m)returnself.cv2(torch.cat(y,1))SPPF改进了什么?
这里讲解的文章就很多了,这里也就不具体描述了,直接给出对比图了
上图中,左边是SPP,右边是SPPF。
PAN-FPN改进了什么?我们先看一下YOLOv5以及YOLOv6的PAN-FPN部分的结构图:
YOLOv5的Neck部分的结构图如下:
YOLOv6的Neck部分的结构图如下:
我们再看YOLOv8的结构图:
可以看到,相对于YOLOv5或者YOLOv6,YOLOv8将C3模块以及RepBlock替换为了C2f,同时细心可以发现,相对于YOLOv5和YOLOv6,YOLOv8选择将上采样之前的1×1卷积去除了,将Backbone不同阶段输出的特征直接送入了上采样操作。
Head部分都变了什么呢?先看一下YOLOv5本身的Head(Coupled-Head):
而YOLOv8则是使用了Decoupled-Head,同时由于使用了DFL 的思想,因此回归头的通道数也变成了4*reg_max的形式:
对比一下YOLOv5与YOLOv8的YAML损失函数对于YOLOv8,其分类损失为VFL Loss,其回归损失为CIOU Loss+DFL的形式,这里Reg_max默认为16。
VFL主要改进是提出了非对称的加权操作,FL和QFL都是对称的。而非对称加权的思想来源于论文PISA,该论文指出首先正负样本有不平衡问题,即使在正样本中也存在不等权问题,因为mAP的计算是主正样本。
q是label,正样本时候q为bbox和gt的IoU,负样本时候q=0,当为正样本时候其实没有采用FL,而是普通的BCE,只不过多了一个自适应IoU加权,用于突出主样本。而为负样本时候就是标准的FL了。可以明显发现VFL比QFL更加简单,主要特点是正负样本非对称加权、突出正样本为主样本。
针对这里的DFL(Distribution Focal Loss),其主要是将框的位置建模成一个 general distribution,让网络快速的聚焦于和目标位置距离近的位置的分布。
DFL 能够让网络更快地聚焦于目标 y 附近的值,增大它们的概率;
DFL的含义是以交叉熵的形式去优化与标签y最接近的一左一右2个位置的概率,从而让网络更快的聚焦到目标位置的邻近区域的分布;也就是说学出来的分布理论上是在真实浮点坐标的附近,并且以线性插值的模式得到距离左右整数坐标的权重。
样本的匹配标签分配是目标检测非常重要的一环,在YOLOv5的早期版本中使用了MaxIOU作为标签分配方法。然而,在实践中发现直接使用边长比也可以达到一阿姨你的效果。而YOLOv8则是抛弃了Anchor-Base方法使用Anchor-Free方法,找到了一个替代边长比例的匹配方法,TaskAligned。
为与NMS搭配,训练样例的Anchor分配需要满足以下两个规则:
正常对齐的Anchor应当可以预测高分类得分,同时具有精确定位;不对齐的Anchor应当具有低分类得分,并在NMS阶段被抑制。基于上述两个目标,TaskAligned设计了一个新的Anchor alignment metric 来在Anchor level 衡量Task-Alignment的水平。并且,Alignment metric 被集成在了 sample 分配和 loss function里来动态的优化每个 Anchor 的预测。Anchor alignment metric:分类得分和 IoU表示了这两个任务的预测效果,所以,TaskAligned使用分类得分和IoU的高阶组合来衡量Task-Alignment的程度。使用下列的方式来对每个实例计算Anchor-level 的对齐程度:
s 和 u 分别为分类得分和 IoU 值,α 和 β 为权重超参。从上边的公式可以看出来,t 可以同时控制分类得分和IoU 的优化来实现 Task-Alignment,可以引导网络动态的关注于高质量的Anchor。
Training sample Assignment:为提升两个任务的对齐性,TOOD聚焦于Task-Alignment Anchor,采用一种简单的分配规则选择训练样本:对每个实例,选择m个具有最大t值的Anchor作为正样本,选择其余的Anchor作为负样本。然后,通过损失函数(针对分类与定位的对齐而设计的损失函数)进行训练。
参考[1].https://github.com/uyolo1314/ultralytics.[2].https://github.com/meituan/YOLOv6.[3].https://arxiv.org/abs/2209.02976.[4].https://github.com/PaddlePaddle/PaddleDetection.[5].https://github.com/PaddlePaddle/PaddleYOLO.[6].https://github.com/open-mmlab/mmyolo.
推荐阅读书童改进 | YOLOv5之架构改进、样本匹配升级、量化部署、剪枝、自蒸馏以及异构蒸馏
目标检测模型设计准则 | YOLOv7参考的ELAN模型解读,YOLO系列模型思想的设计源头
目标检测Trick | SEA方法轻松抹平One-Stage与Two-Stage目标检测之间的差距
扫描上方二维码可联系小书童加入交流群~
想要了解更多前沿AI视觉感知全栈知识【分类、检测、分割、关键点、车道线检测、3D视觉(分割、检测)、多模态、目标跟踪、NerF】、行业技术方案【AI安防、AI医疗、AI自动驾驶】、AI模型部署落地实战【CUDA、TensorRT、NCNN、OpenVINO、MNN、ONNXRuntime以及地平线框架等】,欢迎扫描下方二维码,加入集智书童知识星球,日常分享论文、学习笔记、问题解决方案、部署方案以及全栈式答疑,期待交流!
[ 相关文章 ]
点击下方名片关注【集智书童】,后台回复【YOLOv8】获取YOLOv8源码以及书童亲自绘制的YOLOv8结构图原图。回顾一下YOLOv5,不然没机会了这里粗略回
1、先将锅洗净、擦干、烧热,鲜生姜在锅底抹上一层姜汁,然后放油加热,油热煎鱼,鱼皮不会粘锅。2、洗净的鱼(大的节成鱼块),沾上一层鸡蛋
正文:上周五,M非农数据公布,非农22 3万(预期20万),以及失业率3 5%(预期3 7%)。经济数据的强韧,按理来说是加强鹰派预期的,但为什么美
视频网站限制登录的初衷到底是什么?@新熵原创作者丨石榴编辑丨月见德国社会学家西美尔说,货币给现代生活装上了一个无法停转的轮子,使生活这
疫情3年,香港與內地首階段免檢疫通關今日(8日)開鑼!今日早上6時30分,已有不少心急市民在各大口岸門口排隊等候,爭飲「
工伤鉴定流程有三个步骤,分别是工伤认定,劳动能力鉴定和工伤职工应享有的待遇及救济途径。工伤认定申请即可由用人单位提出,也可由工伤职工
央视网消息:还有不到十天就到小年了,在祖国各地渐浓的年味里,蕴含着日渐复苏的活力。在浙江余杭区百丈镇半山村,一到过年,村
真空度是指处于真空状态下的气体稀薄程度。若所测设备内的压强低于大气压强,其压力测量需要真空表。从真空表所读得的数值称真空度。真空度
1、存货包括的内容:库存商品(原材料、产成品、半成品、在产品);在途物资(材料采购);周转材料(包装物、低值易耗品);分期收款发出商品;委托
cpa意思是注册会计师,是指通过注册会计师的考试获得证书的一个从业资格的一个高级认定。注册会计师,是指取得证书并在会计师事务所执业的
一部具有历史意义的著作——《天体运行论》,完整地提出了日心说理论。在这个理论体系中,太阳是行星系统的中心,一切行星都绕太阳旋转。地
一般个人诈骗数额要达到2000元以上才能立案。诈骗的立案标准按照《最高人民法院、最高人民检察院关于办理诈骗刑事案件具体应用法律若干问题
最佳答案净化空气:香薰对于净化空气的作用非常突出,放在卫生间、衣橱甚至鞋柜,都可以有效消除异味,提升空气质量。尤其是无火香薰非常适
改革开放的历史意义主要体现在以下几个方面:1、开启了当代中国历史新时期,实现了由计划经济向社会主义市场经济的历史性转变 建国以后,
1、国家导游证是指参加导游人员资格考试并合格,取得导游人员资格证书的人员,经与旅行社订立劳动合同或者在导游服务公司登记,由省、自治
不用考虑任何的搭配技巧,就能轻易完成时髦造型的,想必只有黑色服装了吧!黑色服装,颜色经典,同时兼具着百搭的魅力,对于懒人来说,更是福
国际在线报道(记者魏宇晨):商务部新闻发言人束珏婷6日在北京举行的例行记者会上透露,不少外资企业已经开始制定集团高层访华日程,积极推动
参考消息网1月6日报道据美国《华盛顿邮报》网站1月5日报道,美国政府高级官员表示,拜登政府即将公布一项国家战略,首次要求对(@参考消息)
动植物检疫徇私舞弊罪既遂量刑标准的规定:《刑法》对动植物检疫徇私舞弊罪的判刑标准是:犯此罪的,处五年以下有期徒刑或者拘役;造成严重后
“元旦过后就快到春节了,店里会越来越忙碌!”“暖风”吹向市场,小商贩等待客流量回升1月2日,北京市海淀区的一家牛羊肉店内,阙师傅正在用
[ 相关新闻 ]
Copyright 2015-2022 亚洲医院网 版权所有 备案号:豫ICP备20022870号-9 联系邮箱:553 138 779@qq.com